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Consideration is given to the theory of condensation as applied to the liquefaction of gases. Numeri-
cal calculations of the growth of a droplet using methane as an example revealed the decisive role of
heat removal from its surface to the ambient medium in condensation from both a pure vapor and a
vapor–gas mixture. It is shown that for very low supersaturations of the vapor, radiative heat re-
moval can prevail over convective heat removal.

Liquefaction of gases, especially of natural gas composed mainly of methane, is an important techni-
cal problem. With the aim of refining the ideas of the process of liquefaction, it is appropriate to analyze the
features of the condensation growth of a droplet with allowance for heat and mass transfer. This precisely is
the subject matter of the present work.

Let us consider the condensation growth of a single droplet under invariable conditions in the ambient
medium. We assume that the rapid processes of nucleation [1, 2] and initial growth are already over. For the
subsequent retarded growth the droplet has an initial diameter δ0 of the order of 10−7 m that is larger than
the mean-free path of vapor molecules. For a droplet of this diameter and for larger droplets we can disregard
the Laplace pressure and assume that the pressure of a saturated vapor above the droplet is the same as above
a plane surface. To calculate the condensation growth of such droplets, we can use the following equations
of material and heat balance:

ρliq d (πδ3 ⁄ 6) ⁄ dτ = πδ2gv , (1)

ρliq (Cpliq − Cpv) d [(πδ3 ⁄ 6) (Tdr − T∞)] ⁄ dτ = πδ2 [rtabl gv − α (Tdr − T∞) − qrad] , (2)

where α = Nuλv
 ⁄ δ is the coefficient of heat transfer to the ambient medium.

It is approximately adopted that the time-variable temperature of the liquid phase of the droplet Tdr is
constant at a given instant in its radius, since usually λliq

 ⁄ λv ≈ 10, on the average, i.e., Bi = Nuλv
 ⁄ λliq ≈ 

Nu/10 and the assumption made is fulfilled in practice, especially for Nu = 2 (the droplet is sessile relative
to the medium). Allowance for the influence of surface effects and the variability of the temperature inside
the droplet in its growth in a pure vapor is made in [3]. In [4], the influence of dissolved substances on the
evaporation and growth of water droplets under atmospheric conditions is considered. This influence is shown
to be substantial, for example, in condensation on sea-salt particles.
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The specific heat of condensation rtabl(Tdr) corresponds to reckoning the enthalpy from the phase-tran-
sition temperature (i.e., from the temperature Tdr in the approximation used), which conforms to the values
given in the tables of thermophysical properties. The quantities ρliq, Cpliq, and Cpv in the expected ranges of
variation of Tdr change not very appreciably, and we will consider them to be constant. The condensing vapor
has the temperature Tdr; therefore, in formula (2), the difference (Cpliq − Cpv) appears as the specific heat.
Upon rearrangements, Eq. (2) with account for Eq. (1) acquires the form

ρliq (Cpliq − Cpv) (δ ⁄ 6) d (Tdr − T∞) ⁄ dτ = rgv − α (Tdr − T∞) − qrad , (3)

where

r (Tdr, T∞) = [rtabl (Tdr) − (Cpliq − Cpv) (Tdr − T∞)] (4)

 is the specific heat of condensation in reckoning the enthalpy from the temperature T∞.
If the influence of the thermal inertia of the droplet is disregarded, i.e., if the left-hand side of Eq.

(3) is set equal to zero, the droplet temperature can be established as

pgv = α (Tdr − T∞) + qrad . (5)

A change (a growth) in the diameter of the droplet with time can be found from solution of Eq. (1).
The validity of the approximation made follows from the fact that for lowered temperatures Tdr that

are close to the temperature T∞ the intensity of condensation increases while the removal of heat is low. It is
expended to a large measure on heating the liquid phase in the droplet. The time of increase in the tempera-
ture Tdr to values close to those corresponding to condition (5) is small as compared to the time of droplet
growth.

In determining the density of the vapor flow gv involved in condition (5) and in the remaining equa-
tions written above, it should be borne in mind that the value of gv the minimum possible under certain
conditions is determined by the known Hertz−Knudsen formula [2]. If we disregard the small difference of
the ratio Tdr

 ⁄ Tb from unity, which is insignificant for subsequent calculations, this formula can be written in
the following form:

 gv = af √ M ⁄ (2πRTdr)  P (Yb − Ydr) . (6)

Here a = 2 ⁄ (2 − f) is the correction [5] for the influence of the vapor flow to the droplet surface that distorts
the Maxwellian distribution of molecules by velocities (the distribution has been adopted in deriving formula
(6)). The quantity gv decreases as Ydr and Yb approach each other with increase in the temperature Tdr, since
Yb corresponds to the saturation state for this temperature. In the case of a pure vapor, in formula (6) we
should set Yb = 1. Formula (6) is said to express the kinetic resistance of phase transition. In the absence of
this resistance gv could be arbitrarily large (being limited only by the remaining conditions of the problem).

It is noteworthy that the velocity of the vapor vv at the condensation surface cannot exceed a velocity
comparable with the velocity of sound. Otherwise, a substantial gasdynamic resistance to the motion of the
vapor develops. The calculations of condensation considered below have been performed as applied to a
methane vapor and to a mixture of methane with nitrogen. The physical properties of methane were taken
based on the data of [6, 7]. The evaluations performed for the velocity of sound showed that, on the average,
it equals 300 m/sec for methane in the temperature range 111−138 K. Even if we take vv = 30 m/sec, with
allowance for the vapor density ρv ≈ 10 kg/m3 (corresponding to a pressure of 5.89⋅105 Pa of a saturated
vapor of methane at a temperature of 138 K) we have quite an appreciable gasdynamic resistance,
ρvvv

2 ≈ 104 Pa. The considered resistance will be negligible for much smaller velocities of the vapor. In drop-
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wise condensation, this occurs because, owing to the superheating of a droplet and Ydr approaching Yb, the
vapor velocities can be unities, tenths, and even hundredths of a meter per second. The vapor velocity can
reach larger values in the film condensation of metals on a cooled surface with intense removal of heat (in
addition, when the thermal conductivity of the liquid is high).

Turning back to consideration of the condensation growth of a droplet in a pure vapor or a vapor-gas
mixture, we note that the condensing coefficient f for methane in formula (6) can be taken equal to unity,
since the values of f for nonpolar substances differ little from unity [2, 8].

The droplet will be considered to be sessile relative to the medium. Therefore Nu = 2, i.e., α =
2λv

 ⁄ δ. In this case, the convective heat transfer coincides with the heat transfer by conduction through an
unbounded vapor or vapor-gas layer. For a high content of gas we should introduce the mean-effective value
instead of λv. However, a more significant role in heat transfer by conduction is played by the mixture layers
adjacent to the droplet, where the vapor fraction is higher than at a distance. Therefore, in order to keep the
computation from becoming too complicated owing to a possible excess of accuracy, throughout the follow-
ing discussion we will use precisely the values of λv referred to the temperature Tdr.

For increased values of gv we should additionally apply a correction for the influence, on heat trans-
fer, of the expenditure of heat on warming-up the vapor flow to the droplet surface. The corresponding cor-
rection factor can be obtained by using a differential equation of stationary heat conduction for a fixed
spherical layer of the medium around the droplet. In this equation, account should be taken of the influence
of the vapor flow on the temperature profile. Upon the integration performed with allowance for the invari-
ability of the total flow rate of the vapor through a spherical surface of all radii we obtain the following
expression for the heat flux by conduction from a droplet to the ambient medium (in terms of unit surface):

qh = 
2λv

δ
 (Tdr − T∞) 

b

1 − exp (− b)
 ,

where b = Cpvgvδ ⁄ 2λv.
To the droplet, the convective heat flux

qconv = Cpv gv (Tdr − T∞) = 
2λvb

δ
 (Tdr − T∞)

is carried with the vapor flow. The resultant heat flux from the droplet surface is

q = qh − qconv = 
2λv

δ
 X (Tdr − T∞) ,

where

X = b exp (− b) ⁄ [1 − exp (− b)] (7)

is precisely the sought correction factor. The effective value of the heat-transfer coefficient will be α =
2λvX ⁄ δ.

When b → 0, X → 1; when b → ∞, X → 0. For certain intermediate values of b:

b
X

   0.05
0.98

   0.1
0.95

   0.5
0.77

   1
0.58

   3
0.16

   5
0.03

In the majority of calculations done below for a condensation growth of methane droplets, the values
of X changed from 0.94 to 0.98.
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To determine the density of the flux of radiative heat removal from the droplet surface (in W/m2), we
use the expression

qrad = 5.775 ⋅ 10−8 σTdr
4  . (8)

The emissivity factor of the droplet surface σ is close to unity (for example, for water σ ≈ 0.96 [9]).
In the subsequent discussion, we will adopt σ = 1.

Let us calculate the condensation growth of a droplet using methane as an example. For calculating
the condensation of a pure vapor we use formula (5) with account for the dependence (4) of r on tempera-
ture, and also Eq. (1) and expressions (6)−(8).

To close the system of equations, we use the approximation of the experimental data of [5, 6] on the
pressure of a saturated vapor of methane as a function of temperature.

The condensation growth of methane droplets in a pure vapor at a temperature of T = 111 K were
calculated for two pressures: P = 5.89⋅105 Pa (Ts = 138 K) and P = 1.96⋅105 Pa (Ts = 119.7 K) for the above
magnitude of the condensing coefficient f = 1. For comparison, in individual cases the calculations were done
for f = 0.3. Calculation results for f = 1 are presented in Fig. 1. In the δ range of 3⋅10−7 to 10−4 m embraced
by the calculations, it turned out that the value of the vapor-flow density gv at the droplet surface can be
expressed by the dependence

gv = Q ⁄ δ , (9)

Fig. 1. Calculated quantities vs. droplet diameter for the condensation of
a pure vapor of methane: 1) Q⋅106 kg/(m⋅sec); 2) τ⋅10−4 sec; 3)
(1 − Ydr)⋅104; 4) gv

 ⁄ gv
∗ , where gv

∗  is the value of gv for δ = 10−6 m (for
pressures of 5.89⋅105 and 1.96⋅105 Pa, gv

∗  = 2.09 and 0.63 kg/(m2⋅sec),
respectively). The solid lines denote a pressure of 5.89⋅105 Pa; the
dashed line denotes a pressure of 1.96⋅105 Pa; the dash-dot line shows
the absence of the dependence on pressure.
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where Q is a constant equal to 2.09⋅10−6 and 0.63⋅10−6 kg/(m⋅sec) respectively for the above two pressures.
This dependence also holds for higher values of δ.

Upon the substitution of expression (9) into Eq. (1) and integration on condition δ0
2 << δ2 (if, for ex-

ample, δ0 ≈ 10−7 m) we obtain, just as for the case of evaporation of a droplet [10−12], a linear dependence
of δ2 on time, i.e., Sreznevskii’s law:

δ2 = 4Qτ ⁄ ρliq . (10)

In addition to the results of Fig. 1, we give more values of the ratio ∆T ⁄ ∆Tm, where ∆T = Tdr − T∞
is the superheating of the droplet that exists under the conditions of the problem and ∆Tm = Ts(P) − T∞ is the
maximum possible superheating of the droplet that corresponds to the condition of saturation at its surface for
a prescribed pressure of the vapor. For P = 5.89⋅105 Pa, ∆T = 138 − 111 = 27 deg, while for P = 1.96⋅105

Pa, ∆T = 119.7 − 111 = 8.7 deg. In both cases, the values of  ∆T ⁄ ∆Tm in round numbers are as follows:

δ ,  m

∆T ⁄ ∆Tm

     
3 ⋅10−7

0.99
     

10−6

0.999
     

10−5

0.9999

For higher values of δ, the ratios δT ⁄ ∆Tm must be even closer to unity. Thus, with a very small error
the values of gv can be calculated (disregarding radiative heat removal) using the simple expression

gv = α∆TmX ⁄ r , (11)

in calculating by which we obtain practically the same values gvδ = Q as above. The radiative heat removal
had no appreciable effect in all the calculations done for a pure vapor at pressures prescribed in these calcu-
lations.

We also note that, despite the small changes in ∆T ⁄ ∆Tm, the quantity (1 − Ydr) changes with δ sub-
stantially (Fig. 1), which is due to the strong dependence of Ydr = Pvs(Tdr)/P on the temperature Tdr.

The decrease in f to 0.3, as the calculations showed, has practically no effect on the values of gv, Q,
and τ, since (1 − Ydr) accordingly increases. The reason is the appreciable decrease in Ydr with a small de-
crease in the temperature Tdr.

Let us pass to calculating the growth of a droplet in condensation from a mixture of a vapor with a
noncondensable (permanent) gas. The condensation of methane from natural gas that contains an admixture
of nitrogen (an average of 1 vol.% but can be up to 5 vol.% or higher) is one example of practical impor-
tance [13]. Also, there are traces of inert gases and small admixtures of gases condensing earlier than meth-
ane (other hydrocarbons, carbon dioxide, etc.). Sometimes the admixtures of condensing hydrocarbons can be
relatively high (up to 5−10 vol.% and even to 15 vol.% or higher), which has a substantial effect in the initial
stage of liquefaction. Below, we will take into account only the admixture of nitrogen.

Because of the occurring diffusion resistance the intensity of condensation can to a certain measure
decrease. A formula for the diffusion transfer in evaporation or condensation was obtained even by Stefan
[10, 14]. In calculations of the evaporation and growth of droplets and also of fogging [10, 2], and diffusional
burning of droplets [11, 12], account is taken of the Stefan flow, which is frequently of decisive importance.
In condensation on cooled surfaces, the Stefan flow substantially increases the intensity of the process, for
example, in isolation of the vapor of metals from mixtures with inert gases or nitrogen [15].

As applied to a calculation of the droplet growth in condensation of a vapor from a mixture with a
noncondensable gas for a low vapor fraction, the density of the diffusion vapor flow is determined by the
formula
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gv = αD 
PM
RTav

 (Y∞ − Yb) .

For arbitrary vapor fractions, in accordance with the Stefan conclusions a certain Y is replaced by
[−ln (1 − Y)], i.e., the action of the above-mentioned Stefan flow toward the condensation surface is taken
into account. Allowing for this and substituting the value αD = NuDD ⁄ δ, we can, as is usually done, write
for the case of arbitrary vapor fractions

gv = 
NuDD

δ
 
PM

RTav
  ln [(1 − Yb) ⁄ (1 − Y∞)] . (12)

Much as in the calculations of the condensation of a pure vapor, the droplet will be considered to be
sessile. Therefore NuD = 2 (just as Nu = 2). The value of the diffusion coefficient of the methane vapor in
nitrogen was calculated from the first approximation to the theory of Enskog and Chapman [16]. It is estab-
lished that

D = 0.33 (Tav
 ⁄ 110)1.8 ⁄ P ,   m2 ⁄ sec .

The second and higher approximations lead to insignificant differences.
The value of Yb is found from a comparison of the values of gv from formulas (6) and (12), i.e., is

established with allowance for the kinetic and diffusion resistances. This was done in the calculations. How-
ever, if formula (6) is not used, even for high vapor fractions without an appreciable error we can calculate
gv using formula (12) with the replacement of Yb by Ydr in the latter, since usually these quantities differ little
and in logarithmic operation the error is concealed.

Figure 2 presents the values (resulting from calculations) of the parameter Q involved in formula
(10), which still holds, and the times of growth of the droplet τ for δ = 10−6 m versus the relative content of
the methane vapor Y∞ in the mixture with nitrogen at a temperature of the medium of 111 K and pressures
of 5.89⋅105 and 1.96⋅105 Pa.

Fig. 2. Calculated quantities vs. relative vapor content Y∞ in condensa-
tion in a mixture of methane vapor with nitrogen: 1) Q⋅106 kg/(m⋅sec);
a) τ⋅103 sec. T∞ = 111 K. The solid lines denote a pressure of 5.89⋅105

Pa; the dashed lines denote a pressure of 1.96⋅105 Pa.
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Figure 3 gives the times of growth of the droplet versus the diameter for a pressure of 5.89⋅105 Pa
and a temperature of the medium of 111 K for different values of Y∞. From the given results, it is obvious
that for values of Y∞ close to 0.99 the condensation intensity decreases little with decrease in Y∞. We note
that when Y∞ = 0.99 and Y∞ = 1 (pure vapor) the results practically coincide, and formula (11) still holds.
Moreover, in approximate calculations, this formula can also be used for lowered values of Y∞, for example,
for Y∞ = 0.9 with an understating of gv by D1% of a more exact value. For lower values of Y∞, formula (11)
can be used with the replacement of the quantity ∆Tm by ∆T that correspond to the prescribed values of Y∞.
According to the complete numerical calculations made, the ratio Q ⁄ ∆T changes not very appreciably with
decrease in Y∞. For P = 5.89⋅105 Pa, even with a decrease in Y∞ to 0.7, this ratio decreases only by approxi-
mately 4%. For P = 1.96⋅105 Pa, the values of the ratio Q ⁄ ∆T are close to such for P = 5.89⋅105 Pa (6−4%).
All this suggests that the resistance to the removal of the heat of condensation from the droplet surface to the
ambient medium rather than the resistance to the diffusion supply of the vapor to the droplet is predominant.
Therein lies one fundamental feature of the condensation growth of a droplet in a vapor-gas mixture. The
same can be said about the resistance to the droplet growth in a pure vapor. As is obvious from the results
considered above and as is confirmed by formula (11), it is the resistance to the removal of heat released on
the droplet surface rather than the kinetic resistance of phase transition, i.e., constraint of the flow by formula
(6), that is decisive in this case.

So, to at least Y∞ = 0.9 and somewhat lower, simple calculations of gv by formula (11) using the
correction (7) are possible followed by computations of all the remaining quantities that govern the process.
At the same time, it is known that in the most efficient liquefiers of natural gas with reciprocating expanders
or turboexpanders the degree of liquefaction owing to the warming up of the gas by condensation heat release
does not exceed 8−12% (and in expanderless throttle liquefiers it does not exceed 1.8−3%). Thus, even in
expander liquefiers Y∞ can decrease to only 0.9 or somewhat lower.

Because of the expansion of the gas in liquefiers, the total pressure decreases. Therefore, the values
of Q will decrease for this reason, too. If the expansion is not very rapid, i.e., if in a time of droplet growth
of about 10−4−10−3 sec the pressure fails to change appreciably, data (see Fig. 2) for a fixed pressure can be
used directly. For the case of rapid expansion, Eqs. (1), (5)−(8), and (12) and dependence Pvs(T) used can be

Fig. 3. Calculated dependences of the time of growth of a methane drop-
let τ⋅102 sec on the droplet diameter δ for different vapor fractions Y∞ in
a mixture of methane vapor with nitrogen: 1) Y∞ = 0.99; 2) 0.9; 3) 0.7;
4) 0.5; 5) 0.2; 6) 0.175. T∞ = 111 K.
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included in the general system of equations with allowance for expansion. In all cases, a formula that deter-
mines the intensity of formation of liquid-phase nuclei is necessary for complete calculation of the process of
liquefaction. As such a formula, it is reasonable to use Ya. I. Frenkel’s formula [1] yielding, as is shown in
[2], a better agreement with experimental data for water than, for example, the formula of Becker and Dering.
According to the calculation by Ya. I. Frenkel’s formula, for methane the supersaturation S ≈ 2.5 at a tem-
perature of 111 K will be critical, i.e., the nuclei of the liquid phase will begin to develop. For a pressure of
1.96⋅105 Pa at the same temperature, the supersaturation S ≈ 2 is subcritical. Should the methane pressure
with holding of the temperature be 5.89⋅105 Pa the supersaturation S ≈ 6 will be supercritical with an intensity
of nucleation of about 1022 cm−3⋅ sec−1. In this case, a corresponding injection of methane is required to hold
the pressure. For a methane pressure of 4⋅105 Pa and still the same temperature 111 K when the supersatura-
tion S ≈ 4 is also supercritical, the intensity of nucleation decreases by 10 orders of magnitude.

In order to close the system of equations we should use the equations of balance of mass and heat
for a vapor-gas mixture for one specific case or another. Subsequent calculations will make it possible to
determine the droplet size, the degree of liquefaction, and the time of reaching the equilibrium regime as the
droplets cease to grow. Similar calculations are beyond the scope of this work. Here we give only a formula
which replaces relation (10) for the general case:

  δ2 = (4 ⁄ ρliq) ∫ 
0

τ

Q (τ) dτ .

The relationship between Q and τ is determined by the dependences of P and Y∞ on τ in expansion
of the gas in a liquefier.

For a more complete description of Q as a function of P, we add to the results (see Fig. 2) the
calculated values of Q in kg/(m⋅sec) according to the same method for P = 4⋅105 Pa at T∞ = 111 K for
several values:

Fig. 4. Calculated dependences of the relative radiative heat removal
qrad

 ⁄ rgv and the superheating of a droplet ∆T ⁄ ∆Tm on the relative vapor
fraction Y∞ in a mixture of methane vapor with nitrogen: 1) qrad

 ⁄ rgv; 2)
∆T ⁄ ∆Tm. T∞ = 111 K. The solid lines denote a pressure of 5.89⋅105 Pa;
the dashed lines denote a pressure of 1.96⋅105 Pa. For the former pres-
sure ∆Tm = 27 deg, for the latter pressure ∆Tm = 8.7 deg.
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Y∞

Q ⋅ 106     
0.7

1.05
     

0.8

1.22
     

0.9

1.36
     

0.99

1.53

It turns out that in this range of Y∞ values the dependence Q(Y)∞ is close to a linear one, just as in
Fig. 2 for P = 5.89⋅105 Pa (recall that the values of Q are represented there on a logarithmic scale).

In all the calculation results considered above, the convective heat transfer substantially dominated
the radiative heat transfer. The fraction of the radiative release of heat from a droplet qrad

 ⁄ rgv is very small
up to Y∞ ≈ 0.2 for P = 5.89⋅105 Pa and to Y∞ ≈ 0.52 for P = 1.96⋅105 Pa (Fig. 4). Below the indicated values
of Y∞ the superheating of the droplet ∆T and accordingly the convective heat transfer decrease sharply; there-
fore, the radiative heat transfer begins to dominate. In the limiting cases that correspond to Y∞ ≈ 0.171 for P
= 5.89⋅105 Pa and to Y∞ ≈ 0.514 for P = 1.96⋅105 Pa, we can disregard convective heat removal and consider
that the heat of condensation is practically totally removed from the droplet by radiation. For such cases, i.e.,
when the condition α∆T << qrad is fulfilled, Eq. (1) for qrad = const and rρliq = const (since the droplet tem-
perature is constant) yields the following formula:

δ − δ0 = 2qrad τ ⁄ (rρliq) ,

where qrad corresponds to relation (8).
In accordance with the written formula, the droplet will grow very slowly because of the low value

of qrad. We give results of calculating the growth of a single droplet of methane with the initial diameter δ0

= 10−6 m at Tdr ≈ T∞ = 111 K and the partial pressure of the vapor Pv∞ held constant in the ambient medium:

τ , sec

δ ⁄ δ0
     

0.1

1.01
     

0.5

1.05
     

1

1.1
     

2

1.2
     

3

1.3

It is obvious that, for example, if the droplet is given a time of 1 sec for growth, its diameter will
increase by only a factor of 1.1 but its volume (or mass) proportional to δ3 will increase by a factor 1.33
now, etc. We give more results of evaluating the ratio Pv∞

 ⁄ Pvs(T∞) (i.e., supersaturation of the vapor at a
large distance from the droplet) that corresponds to the calculations done. Let the total pressure of a mixture
of a methane vapor with nitrogen be P = 5.89⋅105 Pa. Then according to the condition of saturation at the
temperature Tdr = 111 K we have Ydr = 0.171. When formula (12) with Yb = Ydr is used, we obtain that
Pv∞

 ⁄ Pvs(T∞) ≈ 1 + 0.8⋅10−5. For the pressure of the mixture P = 1.96⋅105 Pa when Ydr = 0.514 for the satu-
ration corresponding to 111 K, similarly to the foregoing we have Pv∞

 ⁄ Pvs(T∞) ≈ 1 + 2⋅10−6. In the case of
simultaneous condensation on many droplets, such supersaturations can rapidly disappear and the process will
cease unless a vapor is added.

We also note that heat can be released directly from the droplet by phase-transition radiation, at least
in the stage of nucleation [17]. In review [17], in particular, results of an investigation [18] are also discussed
in which the effect of a strong supertemperature radiation of water boiling up at atmospheric pressure has
been detected experimentally. The intensity of radiation from the water−glass interface in the region of wave-
lengths of 1.7−1.8 µm exceeded the intensity of black body radiation by approximately a factor of 100. Thus,
energy radiation can occur in opposite phenomena − condensation and boiling. In [18], the detected radiation
is explained by the rearrangement of bonds between water molecules in clusters. All this confirms the as-
sumption of [19] of the propagation, in natural phenomena, of energy radiation inherent in many processes
which occur in opposite directions.

In conclusion, we note that with a rapid expansion of the vapor-gas mixture in the liquefier and the
attainment, as a result, of a high supersaturation, a considerable mass of the vapor can be expended on form-
ing the nuclei of a liquid phase. Subsequently the droplet growth practically ceases, since droplets can grow
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to large sizes only with a relatively slow expansion [20]. If the removal of the occurring phase-transition
radiation using a system of mirrors or a flow laser is provided [21], the degree of liquefaction of the gas can
be increased. In the experiments on an air-liquefaction unit conducted by Yu. G. Belostotskii et al. at the St.
Petersburg Academy of Cold, the presence of the mentioned radiation was detected in the mouth of the noz-
zle of a Joule−Thomson throttle. This phenomenon can be used for raising the capacity of devices intended
for the industrial production of a liquefied natural gas.

NOTATION

ρliq, density of the liquid; δ, droplet diameter; τ, time; gv, density of the vapor flow at the droplet
surface; Cpliq and Cpv, specific heats of the liquid and the vapor at constant pressure; Tdr, droplet temperature;
T∞, temperature of the medium at a distance from the droplet; rtabl, specific heat of condensation in reckoning
the enthalpy from the phase-transition temperature; qrad, density of the radiative heat flux from the droplet
surface; Nu, thermal Nusselt number; λv and λliq, thermal conductivities of the vapor and the liquid; Bi, Biot
number; r, specific heat of condensation in reckoning the enthalpy from the temperature of the medium; f,
condensing coefficient; R, universal gas constant; P, pressure of the medium; Yb = Pv.b

 ⁄ P, Pv.b is the vapor
pressure at a distance from the droplet surface of the order of the mean-free path of molecules; Tb, tempera-
ture at the same distance; Ydr = Pvs(Tdr)/P, Pvs(Tdr), pressure of saturated vapor at the droplet surface at tem-
perature Tdr; Ts, saturation temperature; αD, coefficient of diffusion mass transfer; NuD, diffusional Nusselt
number; D, diffusion coefficient; Tav = (Tdr + T∞)/2, average temperature; M, molecular mass of the vapor;
Pv∞, partial pressure of the vapor at a distance from the droplet; Pvs(T∞), pressure of saturated vapor at tem-
perature T∞; S = Pv∞

 ⁄ Pvs(T∞), supersaturation of the vapor. Subscripts: 0, initial value; liq, liquid; v, vapor;
dr, droplet; rad, radiative; b, boundary value; h, heat-conducting; conv, convective; m, maximum value; av,
average value; tabl, tabulated value; D, diffusional; s, saturated.
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